

The annual cost of foodborne illness in Australia by food commodities and pathogens

Final Report

For: Food Standards Australia New Zealand

3 August 2023

Overview of this report

This project is in relation to services to estimate the cost of foodborne illness by food commodity groups and pathogens for Food Standards Australia New Zealand (FSANZ), contract 2022-23/37. The project builds on prior work by the team at the Australian National University (ANU) to estimate the cost of foodborne illness in Australia.

The project milestones are summarised as follows:

- 1. Scoping meeting.
- 2. All expert elicitation data provided to ANU.
- 3. Draft report and R code provided to FSANZ.
- 4. Final report and model provided to FSANZ.
- 5. Presentation of results to FSANZ and stakeholders.

This document comprises the Final Report as part of milestone 4.

This report includes a summary of the methods used to estimate the cost of illness (as in prior work), a description of the approach used to combine this model with attribution data, the results of the attribution for six costed pathogens, and for the sum over these pathogens, and a detailed Appendix with all parameters and model assumptions.

Table of contents

Glossary and acronyms	5
Executive summary	6
Acknowledgements	7
Introduction	8
Methodology	9
Model of the cost of foodborne illness	9
Model attributing costs to food commodities	10
Results	13
Campylobacter	17
Listeria monocytogenes	18
Non-typhoidal Salmonella	19
Shiga-toxin producing <i>Escherichia coli</i> (STEC)	20
Toxoplasma aondii	21
Yersinia enterocolitica	22
Conclusions	23
References	24
Annondiv	
Pathogen and illness-specific health-care usage assumptions	27
Castroontaritie due to all causes	27
Campylohacter	20
Listeria monocytoaenes	20
Non-typhoidal Salmonella	29
Norovirus	30
Salmonella Typhi	30
Shigella	31
Shiga toxin-producing Escherichia coli	31
Other pathogenic Escherichia coli	32
Toxoplasma gondii	32
Yersinia enterocolitica	33
Guillain-Barré syndrome	33
Haemolytic uraemic syndrome	34
Irritable bowel syndrome	34
Reactive arthritis	35
Pathogen and illness-specific medication usage assumptions	36

Gastroenteritis due to all causes and Norovirus	36
Bacterial pathogens causing gastroenteritis	37
Listeria monocytogenes	38
Toxoplasma gondii	38
Irritable bowel syndrome	38
Reactive arthritis	38
Pathogen and illness-specific testing assumptions	39
Gastroenteritis due to all causes, other pathogenic E. coli and Norovirus	39
Bacterial pathogens causing gastroenteritis modelled using the surveillance approach	39
Listeria monocytogenes	39
Toxoplasma gondii	39
Irritable bowel syndrome	40
Reactive arthritis	41
Hospitalisation codes for pathogens and illnesses	42
Days of paid work lost	43
Willingness to pay to avoid pain and suffering	45
Health outcome trees	47
Attribution proportions by pathogen	58

Glossary and acronyms

Acronym	Descriptor
ABS	Australian Bureau of Statistics
AIHW	Australian Institute of Health and Welfare
ALOS	Average length of stay
ANU	The Australian National University
AR-DRG	Australian Refined Diagnosis Related Groups
AUD	Australian Dollar
DCE	Discrete choice experiment
ED	Emergency department
FSANZ	Food Standards Australia New Zealand
GBS	Guillain-Barré syndrome
GP	General practitioner
HUS	Haemolytic uraemic syndrome
IBS	Irritable bowel syndrome
MBS	Medicare Benefits Schedule
NGSII	National Gastroenteritis Survey II
NNDSS	National Notifiable Diseases Surveillance System
PBS	Pharmaceutical Benefits Scheme
ReA	Reactive arthritis
STEC	Shiga toxin-producing Escherichia coli
UI	Uncertainty interval
VSL	Value of a statistical life
WTP	Willingness to pay

Executive summary

Foodborne disease costs Australia AUD 2.81 billion each year (2023 inflation-adjusted estimate), with high-cost illnesses including campylobacteriosis and its sequelae (annual cost of AUD 420 million), non-typhoidal salmonellosis and its sequelae (AUD 161 million), norovirus (AUD 147 million), and listeriosis (AUD 90 million). Attribution of these costs to food commodity groups is not yet known for Australia, and this evidence could assist in prioritising resources for research, monitoring, surveillance, and standards development.

Expert elicitation is a structured approach to obtaining probabilistic belief statements from experts. An expert elicitation process was carried out for FSANZ, led by Dr Anca Hanea (University of Melbourne), to attribute illness due to eight pathogens (non-typhoidal *Salmonella* species, *Campylobacter* species, *Listeria monocytogenes, Toxoplasma gondii*, STEC, *Yersinia* species, *Vibrio* species, and *Bacillus cereus*) to specific foods. The separate food groups included in the elicitation were beef, lamb, pork, poultry, eggs, dairy (milk and cream, fresh uncured cheese, brined cheese, soft-ripened cheese, firm-ripened cheese), finfish, crustaceans, molluscs, fruit, grains and seeds, nuts, vegetables (fungi, leafy vegetables and herbs, root vegetables, sprouts, vine-stalk), and other.

This project combines the attribution proportions from that expert elicitation study with a foodborne disease costing model for Australia to estimate the number of cases and the annual cost associated with fourteen food categories (beef, crustaceans, dairy, eggs, fin fish, fruit, grains and seeds, lamb, molluscs, nuts, pork, poultry, vegetables, and 'other') for the six pathogens from that study that are included in the costing model (non-typhoidal *Salmonella*, *Campylobacter*, *Listeria monocytogenes*, *Toxoplasmosis gondii*, STEC, *Yersinia* enterocolitica), providing costs per food-pathogen pair, and aggregated by pathogen or by food category.

Of the total of AUD 721 million estimated for the six included pathogens, the greatest cost was attributed to poultry (AUD 328 million, with AUD 279 million due to *Campylobacter*). Other food commodities with high costs attributed to them included vegetables (AUD 107 million), dairy (AUD 61 million), beef (AUD 56 million), and pork (AUD 56 million). Vegetables were associated with 26% of the costs due to *Salmonella* and 23% of the costs due to *STEC* and 23% of the costs due to *Toxoplasma gondii*.

These results provide evidence for policy development, while the flexible model framework enables re-estimation of costs over time and in response to interventions. The long-term aim is to maximise the benefits achieved by regulatory interventions by ensuring they are proportionate and appropriately targeted.

Acknowledgements

This work was funded by Food Standards Australia New Zealand (FSANZ) under contract 2022-23/37. The ANU project team consists of Prof Kathryn Glass and Dr Angus McLure, building on a costing project that also involved Prof Emily Lancsar, Prof Martyn Kirk, Dr Siobhan Bourke, and Danielle Cribb. Tables listing model inputs from that costing report are included here in the Appendix to enable replication of all findings.

The expert elicitation was conducted by Dr Anca Hanea (Centre of Excellence for Biosecurity Risk Analysis, University of Melbourne), Snezana Smiljanic (FSANZ) and Ben Daughtry (FSANZ), with the following ten experts completing all rounds of the expert elicitation process: Prof Mark Turner, Dr Alison Turnbull, Dr Thea King, Kate Astridge, Karen Ferres, Stewart Quinn, Henry Tan, Allison McNamara, Stacy Kane, and Dr Helen Withers.

Introduction

Foodborne disease is a significant cause of illness globally and in Australia. Previously, we estimated that foodborne disease and its sequelae costs Australia AUD 2.81 billion each year (90% uncertainty interval 1.90-4.24 billion)¹, including 420 million due to *Campylobacter*, 161 million due to *Salmonella*, 153 million due to non-Shiga-toxin producing pathogenic *Escherichia coli*, and 147 million due to norovirus.

Estimates of the cost of illness help prioritise interventions, including pathogen-specific measures to reduce illness due to contaminated food. Attribution of the disease costs to the foods responsible for illness further helps in this prioritisation process. Attribution of illness costs to food commodity groups had not previously been estimated for Australia.

Expert elicitation is a structured approach to obtaining probabilistic belief statements from experts about unknown quantities or parameters^{2–5}. In contrast to mathematical modelling approaches to source attribution, expert elicitation can consider pathways to human infection rather than attributing to animal reservoirs. An expert elicitation process was carried out by FSANZ⁶ to attribute foodborne illness to specific foods for eight priority pathogens including six of the ten pathogens included in previous costing work: *Campylobacter, Listeria monocytogenes,* non-typhoidal *Salmonella,* Shiga-toxin producing *Escherichia coli* (STEC), *Toxoplasma gondii,* and *Yersinia enterocolitica.*

The objective of this project is to combine attribution estimates from that expert elicitation with the cost of illness model¹. This enables the estimation of annual cases and the cost of illness by food commodity and by food-pathogen pairs.

Methodology

Model of the cost of foodborne illness

The project builds on prior work¹ which estimated the annual number of cases and cost of illness, circa 2019, due to all causes of gastroenteritis and due to each of the following ten prioritised pathogens:

- Campylobacter
- Listeria monocytogenes
- Norovirus
- Non-typhoidal Salmonella
- Salmonella enterica serovar Typhi (Salmonella Typhi)
- Shiga toxin-producing *Escherichia coli* (STEC)
- Other pathogenic Escherichia coli
- Shigella
- Toxoplasma gondii
- Yersinia enterocolitica

Cost estimates used data on the burden of disease (including illness, hospitalisations, deaths, and sequelae), the financial costs of illness (including direct and indirect costs), the cost of premature mortality, and the non-financial costs of pain and suffering.

The model was developed in R (version 4)⁷ using a simulation approach, with uncertainty captured through distributions for model inputs and reported using uncertainty intervals (UIs). The approach used to estimate the burden of disease, model indirect costs, estimate non-financial costs, and source data is described in a prior report¹, and the Appendices from that report are reproduced here in full to provide all parameter inputs and data assumptions.

The model costed deaths using the value of a statistical life (VSL) of AUD 4.9 million, as recommended by the Office of Best Practice Regulation⁸. Financial costs for non-fatal illnesses included both direct costs (healthcare usage, medication costs, and test costs) and indirect costs due to lost productivity. Direct costs were estimated from administrative healthcare data including the Medicare Benefits Schedule (MBS), the Pharmaceutical Benefits Scheme (PBS), and the Australian Refined Diagnosis Related Groups (AR-DRGs) and followed the methods as described in the Australian Government PBS manual of resource items⁹. Lost productivity due to an individual being unwell, or an individual caring for someone else who was unwell was costed using the human capital approach, with the friction cost model used in sensitivity analysis. Assumptions around days of lost paid work are provided in the Appendix.

Non-financial costs were the valuation of avoiding pain and suffering due to foodborne illness. This was estimated using willingness to pay (WTP) values to avoid pain and suffering to the individual for short or long-term foodborne related illnesses based on a FSANZ-commissioned discrete choice experiment (DCE)^{10,11}. That DCE included treatment costs and access to sick leave as attributes of the DCE task, with the impacts of each illness described by severity (mild and severe) and duration. The inclusion of attributes around treatment costs and sick leave helped to avoid double counting in the

costing model, as lost productivity and direct costs were accounted for elsewhere. WTP estimates and duration of illness by pathogen or illness are provided in the Appendix.

The burden of disease was estimated based on prior work¹², with estimates of incidence, hospitalisations and deaths provided by pathogen and age group (<5, 5–64, and 65+). As in earlier studies¹³, estimates of disease burden were also calculated for four sequelae: Guillain Barré syndrome (GBS), haemolytic uraemic syndrome (HUS), irritable bowel syndrome (IBS), and reactive arthritis (ReA). Key multipliers to estimate the burden of disease from surveillance data included the domestically acquired multiplier (to exclude cases acquired outside Australia), the underreporting multiplier (to scale notification data for undetected cases in the community), and the foodborne multiplier (to limit cases to those due to foodborne transmission). Denominator values for rate calculations were drawn from Australian Bureau of Statistics (ABS) population estimates by age group¹⁴.

Estimates of health-care usage were based on data from a national gastroenteritis survey¹⁵, supplemented by hospitalisation data from the Australian Institute of Health and Welfare (AIHW)¹⁶, death data from the ABS, and using prior burden of disease and costing studies^{12,17,18}. Sequelae can occur following primary illness with some pathogens as shown in the health outcome trees for each pathogen (see Appendix). Additionally, for some pathogens (listeriosis and toxoplasmosis) and all four sequelae, patients can experience long-term or permanent disability. Owing to a lack of data on the impact of ongoing illness on lost productivity and health care usage, we have not costed this and acknowledge it as a limitation of currently available data.

Estimates of the willingness to pay to avoid pain and suffering were used to value nonfinancial costs for the four sequelae. Some patients with sequelae will experience ongoing illness over multiple years. As we estimated costs borne in a single year, 2019, we included ongoing illness from sequelae acquired in the five years prior, costed at 2019 rates. Ongoing conditions for listeriosis and toxoplasmosis include long-term neurological sequelae following listeriosis¹⁹, and chorioretinitis resulting from congenital toxoplasmosis²⁰, primarily in vulnerable such groups as immunocompromised individuals and neonates. Although these conditions were noted in the report on the Australia DCE¹⁰, no willingness to pay to avoid pain and suffering were calculated for these conditions, preventing us from including them in costings.

Our methodology estimated costs, number of cases, deaths, and hospitalisations circa 2019. Though we did not update model inputs to re-estimate burden or costs for the most recent year, we have updated costs for inflation. Using the quarterly all-group CPI rate published by the ABS compounded from baseline (last quarter 2019) to the most recent quarter at the time of the preparation of the report (June 2023), the inflation adjustment was +15.1%.

Model attributing costs to food commodities

To estimate the cost of foodborne illness by food commodity, the costing model described above was augmented with data from a FSANZ expert elicitation to attribute foodborne illness to specific foods for the six of the ten prioritised pathogens included in the costing model: *Campylobacter, Listeria monocytogenes*, non-typhoidal *Salmonella*,

STEC, *Toxoplasma gondii*, and *Yersinia enterocolitica*. In the expert elicitation study, a group of experts were selected based on their expertise, which included microbiology, food safety, and epidemiology.

The expert elicitation used the IDEA protocol²¹ in combination with Cooke's method²². Twelve calibration questions were used to evaluate the experts' calibration and the informativeness of their uncertainty bounds, followed by 72 target questions corresponding to pathogen-commodity pairs. In both calibration questions and elicitation questions, experts were asked for a lower bound, an upper bound and a median estimate for each question. Not all pathogens in the costing model were included in the expert elicitation due to survey burden on participants.

The commodities considered in the expert elicitation were:

- Beef
- Crustaceans
- Dairy
- Eggs
- Fin Fish
- Fruit
- Grains and Seeds
- Lamb
- Molluscs
- Nuts
- Pork
- Poultry
- Vegetables

with an additional category for 'other'.

The output from the expert elicitation was the proportion of illness attributed to each commodity for each pathogen-commodity pair, with uncertainty expressed by individual experts and variation across experts reflected in a distribution for this proportion. This distribution was constructed by interpolating between expert's percentiles, creating a distribution that is piece-wise linear on the inter-percentile ranges. The calibration questions were used to calculate calibration and informativeness scores, that were used as weights when calculating the aggregated distribution over all experts. These distributions are provided for the six pathogens at the end of the Appendix.

The attribution model combined the attribution proportions from the expert elicitation with estimates of annual cases and costs by age group to provide estimates of cases and costs by age, pathogen, and commodity. For all estimated quantities, the 50% quantile (median) across random simulations was provided as a point estimate, while the 5% and 95% quantiles were provided as uncertainty intervals (UIs). As the quantiles of sums of random numbers are typically not the same as the sums of quantiles of random numbers, the totals of point estimates will be similar but not exactly equal to point estimates of total values. Similarly, totals of upper/lower UIs will not exactly equal upper/lower UIs of totals, with totals typically having narrower UIs than totals of component UIs.

As the elicitation did not provide age-specific attribution proportions and there are no data on the cost of illness by food commodity, we assumed that attribution proportions did not vary with age and that the cost per illness varies by age and pathogen but not by commodity. Attribution proportions were elicited for foodborne disease for all *Yersinia* species however we have assumed that the same attributions are applicable for *Yersinia enterocolitica* specifically. During the expert elicitation process, experts were directed to ensure that the total of their point estimates (median) of attribution summed to 100% for each for each pathogen. However, the procedure for weighting and combining estimates across all experts meant the sum of the aggregated point estimates for a given pathogen could be somewhat greater or less than 100%, ranging from 91% to 107%. This range is less than our typical uncertainty in our estimates of cost. Moreover, this does not impact any estimates of the total number of cases or cost of food-borne disease due to a pathogen, for which we use 100% of previously estimated figures (with costs adjusted for inflation).

Results

In 2019, *Campylobacter, Listeria monocytogenes*, non-typhoidal *Salmonella*, STEC, *Toxoplasma gondii*, and *Yersinia enterocolitica* had an estimated combined annual burden of 357,000 cases and a cost of AUD 626 million, inflation-adjusted to AUD 721 million for June 2023. Among the pathogens and food categories considered, poultry was associated with the greatest cost of foodborne illness, with a total cost of AUD 328 million (June 2023). Of this total, AUD 279 million was due to *Campylobacter*, AUD 35.5 million was due to non-typhoidal *Salmonella*, and AUD 2.86 million was due to *L. monocytogenes*. The food category associated with the most cases of foodborne illness circa 2019 was also poultry, with a total burden of 191,000 cases. Of this total, 174,000 cases were due to *Campylobacter*, and 13,200 cases were due to non-typhoidal *Salmonella*.

	<5	5-64	65+	All Ages [†]
Beef	32,400	17,200	6,050	55,900
	(14,500 - 99,900)	(7,280 - 62,400)	(2,770 - 21,300)	(25,500 - 182,000)
Crustaceans	2,440	3,170	1,200	7,080
	(222 - 21,900)	(316 - 28,200)	(118 - 10,800)	(688 - 64,400)
Dairy	30,800	21,700	7,550	60,700
	(11,300 - 94,400)	(8,390 - 65,700)	(2,990 - 22,700)	(23,900 - 181,000)
Eggs	16,300	12,500	4,860	34,000
	(1,680 - 50,600)	(1,280 - 37,100)	(495 - 15 <i>,</i> 400)	(3,540 - 101,000)
Finfish	5,250	7,080	2,740	15,400
	(1,250 - 25,300)	(1,360 - 33,400)	(539 - 13,000)	(3,330 - 73,500)
Fruit	9,100	9,530	3,700	22,800
	(3,170 - 29,000)	(2,750 - 33,500)	(1,100 - 12,700)	(7,390 - 77,100)
Grains and seeds	3,830	2,550	1,070	7,530
	(403 - 20,900)	(161 - 14,200)	(81.6 - 6,250)	(690 - 39,600)
Lamb	22,800	11,600	4,020	38,700
	(8,280 - 86,000)	(4,100 - 55,900)	(1,600 - 19,100)	(14,600 - 160,000)
Molluscs	2,170	2,630	1,000	5,990
	(429 - 21,500)	(508 - 27,400)	(192 - 10,400)	(1,200 - 63,200)
Nuts	1,940	1,310	547	3,840
	(202 - 13,400)	(81.7 - 8,010)	(41.9 - 3,660)	(350 - 23,900)
Pork	30,900	17,800	6,510	55,700
	(13,200 - 96,000)	(6,910 - 62,400)	(2,810 - 21,600)	(24,100 - 179,000)
Poultry	198,000	99,700	27,800	328,000
	(98,000 - 341,000)	(52,900 - 161,000)	(14,200 - 47,800)	(170,000 - 537,000)
Vegetables	54,200	38,100	13,900	107,000
	(24,600 - 117,000)	(17,900 - 79,700)	(6,530 - 29,000)	(51,200 - 221,000)
Other	34,900	15,600	4,560	55,600
	(6,310 - 102,000)	(2,390 - 56,400)	(1,000 - 17,500)	(10,000 - 176,000)
All Food	404,000	237,000	78,000	721,000
	(301,000 - 566,000)	(190,000 - 304,000)	(59,300 - 104,000)	(574,000 - 946,000)

Table 1: Estimated annual costs for six prioritised pathogens (90% uncertainty intervals). Costs are thousands of AUD, estimated for 2019 and inflation adjusted to June 2023.

[†] Totals reflect the median of model simulations, so may not equal the sum of individual columns or rows, and uncertainty intervals (UIs) of totals will typically be narrower than the sum of the component UIs.

Figure 1 Estimated costs arising from foodborne disease due to six pathogens, attributed to thirteen food commodities and 'other'. For clarity, the total cost for all food has been plotted on a separate horizontal scale. Costs were estimated for 2019 and have been inflation adjusted to June 2023.

Figure 2 Estimated annual cases, hospitalisations, deaths, and costs arising from foodborne cases for six pathogens, attributed to thirteen food categories and 'other'. For clarity, the total of each outcome has been plotted on a separate horizontal scale. Costs were estimated for 2019 and have been inflation adjusted to June 2023.

	<5	5–64	65+	All Ages ⁺
Beef	19,400	4,330	3,880	27,600
	(7,480 - 60,100)	(1,450 - 15,100)	(1,630 - 13,400)	(10,800 - 88,600)
Crustaceans	86.6	29.7	33	149
	(3 - 2,770)	(2.68 - 632)	(1.05 - 1,060)	(7.94 - 4,470)
Dairy	15,600	4,000	2,980	22,600
	(3,930 - 53,300)	(888 - 13,700)	(843 - 12,200)	(5,750 - 79,500)
Eggs	7,910	1,790	3,030	12,700
	(800 - 26,500)	(181 - 6,000)	(307 - 10,100)	(1,290 - 42,600)
Finfish	604	157	206	967
	(87.4 - 5,550)	(30.8 - 1,460)	(26.1 - 1,600)	(146 - 8,640)
Fruit	2,780	504	932	4,220
	(704 - 12,400)	(93.3 - 1,990)	(201 - 3,880)	(1,020 - 18,100)
Grains and seeds	1,710	393	634	2,740
	(115 - 10,600)	(28.1 - 2,410)	(33.6 - 4,040)	(178 - 17,000)
Lamb	14,700	3,110	2,890	20,800
	(4,590 - 51,500)	(765 - 12,300)	(1,010 - 12,100)	(6,540 - 76,600)
Molluscs	462	108	177	746
	(3.86 - 3,110)	(4.11 - 708)	(1.41 - 1,190)	(9.93 - 5,010)
Nuts	878	201	324	1,400
	(58.9 - 6,070)	(14.4 - 1,390)	(17.5 - 2,290)	(91.2 - 9,730)
Pork	17,800	4,240	3,580	25,700
	(6,550 - 57,000)	(1,360 - 14,400)	(1,460 - 12,900)	(9,530 - 84,400)
Poultry	133,000	36,800	21,100	191,000
	(62,/00 - 238,000)	(1/,100 - 66,400)	(10,300 - 36,700)	(90,400 - 341,000)
Vegetables	28,300	6,700	6,800	41,900
	(10,600 - 67,200)	(2,240 - 16,700)	(2,520 - 16,600)	(15,600 - 100,000)
Other	23,900	6,140	3,860	33,900
	(4,120 - 67,400)	(702 - 17,900)	(892 - 13,100)	(5,830 - 97,600)
All Food	247,000	64,300	46,000	357,000
	(169,000 - 367,000)	(42,900 - 98,100)	(32,600 - 65,300)	(245,000 - 529,000)

Table 2: Estimated annual number of cases circa 2019 for six prioritised pathogens (90% uncertainty intervals)

[†] Totals reflect the median of model simulations, so may not equal the sum of individual columns or rows, and uncertainty intervals (UIs) of totals will typically be narrower than the sum of the component UIs.

Campylobacter

The total annual cost of campylobacteriosis and its sequelae was estimated to be AUD 420 million (inflation-adjusted to 2023), arising from 264,000 cases of foodborne campylobacteriosis, with an associated 5,640 hospitalisations and 4 deaths each year. We also estimated 19,800 cases and 598 hospitalisations each year due to reactive arthritis following foodborne campylobacteriosis, 23,200 cases and 2,300 hospitalisations each year due to IBS following campylobacteriosis, and 98 hospitalised cases and 8 deaths each year due to GBS following campylobacteriosis. Poultry was the leading source (66%) with a total annual cost of AUD 280 million arising from 174,000 cases of initial illness, 28,000 cases of sequel illness, 5,920 hospitalisations, and eight deaths. The next three most frequent sources were other (10%), vegetables (7%), and beef (6%).

	<5	5-64	65+	All Ages [†]
Beef	15,100	6,970	1,780	24,000
	(2,580 - 61,600)	(1,230 - 28,100)	(300 - 7,420)	(4,190 - 94,100)
Crustaceans	0*	0*	0*	0*
Dairy	14,900	6,970	1,750	23,900
	(1,170 - 53,500)	(548 - 24,600)	(138 - 6,420)	(1,880 - 81,200)
Eggs	0*	0*	0*	0*
Finfish	0*	0*	0*	0*
Fruit	0*	0*	0*	0*
Grains and seeds	0*	0*	0*	0*
Lamb	11,000	5,090	1,290	17,500
	(537 - 46,500)	(250 - 21,000)	(63.1 - 5,560)	(859 - 70,300)
Molluscs	0*	0*	0*	0*
Nuts	0*	0*	0*	0*
Pork	13,500	6,220	1,580	21,400
	(1,170 - 56,200)	(547 - 25,300)	(137 - 6,740)	(1,880 - 85,800)
Poultry	175,000	81,200	20,500	279,000
	(79,500 - 316,000)	(39,100 - 137,000)	(9,070 - 37,800)	(133,000 - 480,000)
Vegetables	18,300	8,520	2,140	29,300
	(1,410 - 59,500)	(659 - 26,900)	(165 - 7,060)	(2,260 - 90,300)
Other	27,000	12,700	3,160	43,400
	(11.6 - 79,400)	(5.44 - 36,100)	(1.41 - 9,540)	(17.9 - 122,000)
All Food	265,000	122,000	31,200	420,000
	(170,000 - 423,000)	(85,800 - 182,000)	(19,300 - 50,800)	(288,000 - 637,000)

Table 3: Estimated annual cost for *Campylobacter* (90% uncertainty intervals). Costs are thousands of AUD,estimated for 2019 and inflation adjusted to June 2023.

[†] Totals reflect the median of model simulations, so may not equal the sum of individual columns or rows, and uncertainty intervals (UIs) of totals will typically be narrower than the sum of the component UIs.

* No cases were deemed to be attributable to this source.

Listeria monocytogenes

Listeria monocytogenes resulted in an annual cost of approximately AUD 90 million (inflation-adjusted to 2023), arising from 101 cases (all assumed to be hospitalised) and 15 deaths. Vegetables were the leading source (23%) with a total annual cost of AUD 21 million arising from 22 cases of illness (assumed hospitalised) and four deaths. The next three most frequent sources were dairy (17%), fruit (12%), and finfish (12%).

estimated for 2019 and innation adjusted to june 2025.				
	<5	5-64	65+	All Ages [†]
Beef	1,170	2,020	759	3,990
	(40.1 - 5,580)	(69.4 - 9,280)	(26.6 - 3,810)	(135 - 16,500)
Crustaceans	1,250	2,150	810	4,230
	(57.9 - 6,170)	(99.5 - 10,300)	(37.5 - 4,200)	(198 - 18,500)
Dairy	4,430	7,590	2,860	15,100
	(1,050 - 14,900)	(1,820 - 25,000)	(639 - 9,930)	(3,920 - 46,400)
Eggs	0*	0*	0*	0*
Finfish	3,300	5,670	2,130	11,200
	(355 - 13,100)	(614 - 22,100)	(223 - 8,830)	(1,260 - 40,700)
Fruit	3,160	5,480	2,010	11,200
	(299 - 8,880)	(520 - 14,800)	(192 - 6,040)	(1,060 - 26,400)
Grains and seeds	0*	0*	0*	0*
Lamb	695	1,190	448	2,360
	(23.3 - 3,380)	(39.7 - 5,610)	(15 - 2,320)	(77.3 - 9,760)
Molluscs	861	1,490	550	3,000
	(40 - 3,300)	(68.3 - 5,490)	(26 - 2,270)	(137 - 9,560)
Nuts	0*	0*	0*	0*
Pork	2,540	4,370	1,630	8,800
	(71.4 - 9,200)	(124 - 15,300)	(47.4 - 6,250)	(239 - 27,900)
Poultry	858	1,460	560	2,860
	(13.3 - 5,170)	(22.4 - 8,620)	(8.77 - 3,540)	(43.2 - 15,400)
Vegetables	6,000	10,300	3,840	21,000
	(1,840 - 14,300)	(3,210 - 24,000)	(1,130 - 9,680)	(7,020 - 43,600)
Other	0*	0*	0*	0*
All Food	26,300	45,200	17,000	90,200
	(16,100 - 41,000)	(28,600 - 67,900)	(9,550 - 28,400)	(67,500 - 118,000)

Table 4: Estimated annual cost for *Listeria monocytogenes* (90% uncertainty intervals). Costs are thousands of AUD, estimated for 2019 and inflation adjusted to June 2023.

⁺ Totals reflect the median of model simulations, so may not equal the sum of individual columns or rows, and uncertainty intervals (UIs) of totals will typically be narrower than the sum of the component UIs.

* No cases were deemed to be attributable to this source.

Non-typhoidal Salmonella

Non-typhoidal *Salmonella* resulted in an annual cost of approximately AUD 160 million (inflation-adjusted to 2023), arising from 61,600 cases of initial illness, 11,100 cases of sequel illness (reactive arthritis or irritable bowel syndrome), 4,460 hospitalisations, and eleven deaths. Vegetables were the leading source (26%) with a total annual cost of AUD 42 million arising from 15,300 cases of initial illness, 2,630 cases of sequel illness, 1,150 hospitalisations, and three deaths. The next three most frequent sources were poultry (22%), eggs (21%), and beef (6%).

<5 5-64 65+ All Ages[†] Beef 4,700 3,600 1,400 9,830 (231 - 5,420) (1,690 - 33,700)(784 - 17,500) (611 - 12,300)Crustaceans 159 116 48.7 313 (0.000505 - 1,600)(0.00299 - 9,630)(0.00163 - 5, 150)(0.00112 - 3,490)Dairy 6,200 3,030 2,290 914 (195 - 40,400)(94.6 - 20,800) (72.5 - 14,900)(28.5 - 6, 440)12,500 34,000 16,300 4,860 Eggs (1,680 - 50,600)(1,280 - 37,100)(495 - 15, 400)(3,540 - 101,000) Finfish 809 611 242 1,670 (1.42 - 4,960)(1.02 - 3,370)(0.432 - 1,560)(2.73 - 9,210)Fruit 3,780 2,890 1,130 7,880 (248 - 10,900)(94.8 - 4,760)(321 - 15, 300)(676 - 29,400)Grains and seeds 2,360 6,400 3,130 943 (58.5 - 19,700)(44.4 - 14,000)(17.8 - 6, 110)(119 - 38, 100)4,650 Lamb 2,270 1,710 683 (348 - 12,800)(272 - 8,980)(102 - 3,950)(753 - 24,500)Molluscs 932 705 279 1,920 (1.6 - 5,730)(1.14 - 3,930)(0.469 - 1,770)(3.36 - 10,800)Nuts 471 1,560 1,170 3,190 (32.4 - 11,000)(24.3 - 7,740)(9.73 - 3,400)(65.7 - 21,000)Pork 3,290 2,490 991 6,790 (290 - 11, 200)(112 - 4,950)(800 - 30,800)(377 - 16,000)Poultry 16,900 13,000 35,500 5,030 (5,420 - 95,300)(2,510 - 48,300)(1,960 - 35,100)(743 - 14,800)Vegetables 15,200 41,700 19,700 5,860 (5,670 - 99,600)(2,650 - 50,700)(2,070 - 36,800)(780 - 15,500)Other 896 270 1,840 678 (2.9 - 6, 250)(2.12 - 4, 430)(0.876 - 1,970)(5.71 - 11,900)All Food 77,400 59,700 161,000 23,200 (50,600 - 123,000)(40,900 - 85,800)(14,500 - 38,200)(117,000 - 231,000)

Table 6: Estimated annual cost for non-typhoidal *Salmonella* (90% uncertainty intervals). Costs are thousands of AUD, estimated for 2019 and inflation adjusted to June 2023.

[†] Totals reflect the median of model simulations, so may not equal the sum of individual columns or rows, and uncertainty intervals (UIs) of totals will typically be narrower than the sum of the component UIs.

Shiga-toxin producing Escherichia coli (STEC)

STEC resulted in an annual cost of approximately AUD 13 million AUD (inflationadjusted to 2023), arising from 2,630 cases of initial illness, 78 cases of sequel illness (haemolytic uremic syndrome), 112 hospitalisations, and two deaths. Beef was the leading source (34%) with a total annual cost of AUD 4.6 million arising from 864 cases of initial illness, 25 cases of sequel illness, 38 hospitalisations, and one death. The next three most frequent sources were vegetables (20%), dairy (10%), and lamb (9%).

	<5	5-64	65+	All Ages [†]
Beef	3,170	703	462	4,640
	(569 - 8,050)	(114 - 2,270)	(73.9 - 1,540)	(848 - 10,800)
Crustaceans	0*	0*	0*	0*
Dairy	903	210	138	1,280
	(41 - 4,880)	(9.15 - 1,310)	(5.95 - 875)	(58.9 - 6,640)
Eggs	0*	0*	0*	0*
Finfish	0*	0*	0*	0*
Fruit	429	96.1	63.2	622
	(57.3 - 1,760)	(11.8 - 506)	(7.67 - 340)	(84.8 - 2,320)
Grains and seeds	287	64.9	42.7	413
	(19.4 - 1,470)	(4.19 - 424)	(2.78 - 286)	(28.3 - 1,940)
Lamb	887	205	135	1,260
	(62.1 - 4,590)	(13.6 - 1,250)	(8.79 - 839)	(90.2 - 6,250)
Molluscs	0*	0*	0*	0*
Nuts	139	31.6	20.7	200
	(2.17 - 824)	(0.541 - 250)	(0.348 - 167)	(3.03 - 1,090)
Pork	590	137	89.9	840
	(27.1 - 3,360)	(6.01 - 917)	(4.02 - 623)	(38.8 - 4,530)
Poultry	0*	0*	0*	0*
Vegetables	1,900	435	286	2,710
	(373 - 6,870)	(73.3 - 1,880)	(47.3 - 1,260)	(564 - 9,410)
Other	611	140	92.3	873
	(101 - 2,880)	(20.1 - 795)	(13 - 536)	(152 - 3,830)
All Food	9,370	2,150	1,410	13,400
	(5,230 - 16,200)	(891 - 4,960)	(570 - 3,380)	(8,360 - 21,100)

Table 9: Estimated annual cost for STEC (90% uncertainty intervals). Costs are thousands of AUD, estimated for2019 and inflation adjusted to June 2023.

⁺ Totals reflect the median of model simulations, so may not equal the sum of individual columns or rows, and uncertainty intervals (UIs) of totals will typically be narrower than the sum of the component UIs.

* No cases were deemed to be attributable to this source.

Toxoplasma gondii

The total cost of illness due to toxoplasmosis was estimated at AUD 15 million per year (inflation-adjusted to 2023), arising from 15,500 cases of foodborne illness, 35 hospitalisations, and one death. Beef was the leading source (23%) with a total annual cost of AUD 3.5 million arising from 3,380 cases of illness, and eight hospitalisations. The next three most frequent sources were lamb (23%), vegetables (17%), and pork (16%).

	<5	5-64	65+	All Ages [†]
Beef	2,480	592	277	3,450
	(458 - 7,890)	(95.7 - 2,320)	(45.5 - 1,030)	(657 - 10,700)
Crustaceans	0*	0*	0*	0*
Dairy	507	121	57	707
	(8.58 - 2,310)	(2.21 - 739)	(1.01 - 318)	(11.7 - 3,130)
Eggs	0*	0*	0*	0*
Finfish	0*	0*	0*	0*
Fruit	503	117	55.5	705
	(69.8 - 1,710)	(15.2 - 566)	(7.1 - 242)	(98.9 - 2,270)
Grains and seeds	0*	0*	0*	0*
Lamb	2,440	572	270	3,410
	(204 - 7,970)	(46.6 - 2,350)	(21.7 - 1,040)	(287 - 10,800)
Molluscs	0*	0*	0*	0*
Nuts	0*	0*	0*	0*
Pork	1,770	411	195	2,480
	(167 - 5,680)	(37.5 - 1,700)	(17.6 - 744)	(236 - 7,650)
Poultry	546	129	60.6	764
	(92.3 - 1,990)	(19.4 - 636)	(9.3 - 275)	(133 - 2,630)
Vegetables	1,800	427	200	2,510
	(121 - 6,600)	(27.8 - 1,920)	(13 - 856)	(170 - 8,920)
Other	1,310	316	148	1,830
	(117 - 5,380)	(26.1 - 1,580)	(12.4 - 701)	(164 - 7,260)
All Food	10,900	2,560	1,230	15,100

Table 11: Estimated annual cost for T*oxoplasma gondii* (90% uncertainty intervals). Costs are thousands of AUD, estimated for 2019 and inflation adjusted to June 2023.

⁺ Totals reflect the median of model simulations, so may not equal the sum of individual columns or rows, and uncertainty intervals (UIs) of totals will typically be narrower than the sum of the component UIs.

(1,140 - 5,830)

(537 - 2,450)

(9,350 - 22,400)

* No cases were deemed to be attributable to this source.

(6,250 - 17,000)

Yersinia enterocolitica

The total cost of illness due to yersiniosis was estimated at AUD 12 million per year (inflation-adjusted to 2023), arising from 7,170 cases of initial foodborne illness, 820 cases of sequel illness (reactive arthritis), 63 hospitalisations, and one death. Pork was the leading source (50%) with a total annual cost of AUD 6 million arising from 3,510 cases of initial illness, 377 cases of sequel illness, and 32 hospitalisations. The next three most frequent sources were vegetables (17%), beef (10%), and lamb (10%).

	<5	5-64	65+	All Ages [†]
Beef	867	169	150	1,220
	(40.9 - 3,690)	(7.97 - 901)	(7.16 - 742)	(57.6 - 5,090)
Crustaceans	0*	0*	0*	0*
Dairy	664	131	116	933
	(29 - 3,240)	(5.69 - 798)	(5.05 - 650)	(41 - 4,500)
Eggs	0*	0*	0*	0*
Finfish	184	36.5	32.3	258
	(0.127 - 1,140)	(0.0359 - 315)	(0.0271 - 250)	(0.177 - 1,570)
Fruit	0*	0*	0*	0*
Grains and seeds	0*	0*	0*	0*
Lamb	863	168	150	1,210
	(43.2 - 3,640)	(8.47 - 891)	(7.46 - 732)	(60.6 - 5,020)
Molluscs	0*	0*	0*	0*
Nuts	0*	0*	0*	0*
Pork	4,210	789	712	5,950
	(847 - 9,350)	(151 - 2,440)	(137 - 1,940)	(1,220 - 12,900)
Poultry	0*	0*	0*	0*
Vegetables	1,440	281	249	2,030
	(83.4 - 5,580)	(16.1 - 1,340)	(14.2 - 1,100)	(118 - 7,720)
Other	125	33.5	26.5	171
	(0.133 - 9,110)	(0.0346 - 2,090)	(0.0284 - 1,740)	(0.186 - 12,600)
All Food	8,540	1,630	1,470	12,000
	(4,870 - 14,400)	(766 - 4,100)	(712 - 3,190)	(7,070 - 19,700)

Table 12: Estimated annual cost for *Yersinia enterocolitica* (90% uncertainty intervals). Costs are thousands of AUD,estimated for 2019 and inflation adjusted to June 2023.

[†] Totals reflect the median of model simulations, so may not equal the sum of individual columns or rows, and uncertainty intervals (UIs) of totals will typically be narrower than the sum of the component UIs.

* No cases were deemed to be attributable to this source.

Conclusions

Foodborne disease costs Australia AUD 2.44 annually (circa 2019, inflation adjusted to 2.81 billion in 2023), with *Campylobacter*, norovirus, other pathogenic *Escherichia coli*, and non-typhoidal *Salmonella* all estimated to cost Australians over AUD 100 million each year¹. An expert elicitation process was carried out by FSANZ to obtain estimates of the proportion of foodborne illness that can be attributed to specific foods for prioritised foodborne pathogens. This project combined these expert elicitation proportions with the costing model to calculate the cost associated with foodborne illness for fourteen food commodities and six pathogens.

Of the total AUD 721 million (2023 dollars) associated with the six included pathogens, the greatest cost (AUD 328 million) was associated with poultry, followed by vegetables (AUD 107 million), dairy (AUD 61 million), beef (AUD 56 million) and pork (AUD 56 million). *Campylobacter* had the highest total cost and contributed AUD 279 million to the costs associated with poultry. The high cost associated with vegetables was largely due to *Salmonella* (26% of costs), *Campylobacter* (7% of costs), and *L monocytogenes* (23% of costs). Beef was the leading source associated with both STEC and *T. gondii*, while pork was the leading source associated with *Y. enterocolitica*.

A relatively high cost (AUD 56 million) could not be attributed to any of the fourteen food commodities, primarily due to 10% of campylobacter cases being attributed to 'other' in the expert elicitation. Consideration of potential additional food sources may be helpful in controlling *Campylobacter*, the pathogen with the greatest estimated annual cost in Australia.

The costing model includes four additional pathogens (norovirus, other pathogenic *E. coli, Salmonella* Typhi, and *Shigella*) that were not considered in the expert elicitation, due to the burden on participants and challenges associated with defining cases and transmission routes for these pathogens. Norovirus and other pathogenic *E. coli* are both estimated to cost Australians over AUD 100 million each year, so further work in this space may be of value. The flexibility of the costing tool enables costs to be updated if further studies are conducted to include these pathogens.

The costing model provides strategic information that enables interventions to be targeted at specific produce and pathogens and so maximise the benefits achieved by regulatory intervention.

References

- Glass K, Bourke S, McLure A, Cribb D, Kirk M, Lancsar E. The annual cost of foodborne illness in Australia. Report to Food Standards Australia New Zealand. 2022.
- Vally H, Glass K, Ford L, al et. Proportion of illness acquired by foodborne transmission for nine enteric pathogens in Australia: An expert elicitation. Foodborne Pathog Dis. 2014;1(9):727–33.
- 3. Butler AJ, Thomas MK, Pintar KDM. Expert elicitation as a means to attribute 28 enteric pathogens to foodborne, waterborne, animal contact, and person-to-person transmission routes in Canada. Foodborne Pathog Dis. 2015 Apr 1;12(4):335–44.
- 4. Sapp AC, Amaya MP, Havelaar AH, Nane GF. Attribution of country level foodborne disease to food group and food types in three African countries: Conclusions from a structured expert judgment study. PLoS Negl Trop Dis. 2022;16(9).
- Hoffmann S, Devleesschauwer B, Aspinall W, Cooke R, Corrigan T, Havelaar A, et al. Attribution of global foodborne disease to specific foods: Findings from a World Health Organization structured expert elicitation. PLoS One. 2017 Sep 1;12(9).
- 6. Hanea A, Smiljanic S, Daughtry B. Structured expert judgement elicitation for the attribution of food commodity and pathogen pairs. 2023.
- R Core Team. R: A language and environment for statistical computing.
 [Internet]. R, editor. Foundation for Statistical Computing. Vienna, Austria; 2021.
 Available from: https://www.R-project.org/
- 8. Australian Government Department of Prime Minister and Cabinet Office of Best Practice Regulation. Best Practice Regulation Guidance Note: Value of statistical life. 2019. Available from: https://oia.pmc.gov.au/sites/default/files/2022-09/value-statistical-life-guidance-note.pdf
- 9. Australian Government Department of Health. Manual of resource items and their associated unit costs - December 2016. The Pharmaceutical Benefits Scheme, editor. 2016. Available from: https://www.pbs.gov.au/info/industry/useful-resources/manual
- 10. Centre for Health Economics Research and Evaluation. Study report for Discrete Choice Experiment (DCE): Consequences of foodborne illness. University of Technology, Sydney; 2017.
- 11. Manipis K, Mulhern B, Haywood P, Viney R, Goodall S. Estimating the willingness-to-pay to avoid the consequences of foodborne illnesses: a discrete choice experiment. European Journal of Health Economics. 2022.
- Kirk M, Ford L, Glass K, Hall G. Foodborne illness, Australia, circa 2000 and circa 2010. Emerg Infect Dis. 2014;20(11):1857–64. Available from: https://pubmed.ncbi.nlm.nih.gov/25340705

- 13. Ford L, Kirk M, Glass K, Hall G. Sequelae of foodborne illness caused by 5 pathogens, Australia, circa 2010. Emerg Infect Dis. 2014;20(11):1865–71. Available from: https://pubmed.ncbi.nlm.nih.gov/25340885
- 14. Australian Bureau of Statistics. National, state and territory population. Vol. 2021. 2021. Available from: https://www.abs.gov.au/statistics/people/population/national-state-and-territory-population/dec-2020
- 15. Kirk M. National Gastroenteritis Survey II (NGSII). 2008.
- Australian Government Institute of Health and Welfare. Principal Diagnosis data cubes. Vol. 2021. 2020. Available from: https://www.aihw.gov.au/reports/hospitals/principal-diagnosis-data-cubes/contents/data-cubes
- 17. Ford L, Glass K, Kirk MD. The cost of foodborne illness in Australia, circa 2015: Health care usage and absenteeism due to foodborne illness. Report to the New South Wales Food Authority. 2018.
- 18. Abelson P, Potter Forbes M, Hall G. The annual cost of foodborne illness in Australia. 2006.
- 19. de Noordhout CM, Devleesschauwer B, Angulo FJ, Verbeke G, Haagsma J, Kirk M, et al. The global burden of listeriosis: a systematic review and meta-analysis. Lancet Infect Dis. 2014/09/23. 2014;14(11):1073–82.
- 20. Havelaar AH, Kemmeren JM, Kortbeek LM. Disease burden of congenital toxoplasmosis. Clin Infect Dis. 2007/05/08. 2007;44(11):1467–74.
- 21. Hemming V, Burgman MA, Hanea AM, McBride MF, Wintle BC. A practical guide to structured expert elicitation using the IDEA protocol. Methods Ecol Evol. 2018 Jan 1;9(1):169–80.
- 22. Cooke R. Experts in uncertainty: Opinion and subjective probability in science. Environmental Ethics and Science Policy Series. Oxford University Press; 1991.
- 23. Australian Government Department of Health. National Notifiable Diseases Surveillance System. 2020. Available from: https://www.health.gov.au/resources/collections/nndss-public-datasets
- 24. Hall G, Yohannes K, Raupach J, Becker N, Kirk M. Estimating Community Incidence of Salmonella, Campylobacter, and Shiga Toxin-producing Escherichia coli Infections, Australia. Emerg Infect Dis. 2008;14(10):1601–9.
- 25. Sinclair MI, Hellard ME, Wolfe R, Mitakakis TZ, Leder K, Fairley CK. Pathogens causing community gastroenteritis in Australia. J Gastroenterol Hepatol. 2005;20(11):1685–90. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1440-1746.2005.04047.x
- 26. Glass K, Ford L, Hall G, Wong D, Kirk M. The cost of foodborne illness in Australia, circa 2015: age- and sex-specific estimates of incidence, hospitalisations and deaths due to contaminated food. Report to the New South Wales Food Authority. 2016.

- 27. Molan A, Nosaka K, Hunter M, Wang W. Seroprevalence and associated risk factors of Toxoplasma gondii infection in a representative Australian human population: The Busselton health study. Clin Epidemiol Glob Health. 2020;8(3):808–14. Available from: https://www.sciencedirect.com/science/article/pii/S2213398420300415
- 28. Frenzen PD. Economic cost of Guillain-Barré syndrome in the United States. Neurology. 2008/07/02. 2008;71(1):21–7.
- 29. Elliott EJ, Robins-Browne RM, O'Loughlin E V, Bennett-Wood V, Bourke J, Henning P, et al. Nationwide study of haemolytic uraemic syndrome: clinical, microbiological, and epidemiological features. Arch Dis Child. 2001/07/24. 2001;85(2):125–31.
- 30. Canavan C, West J, Card T. The epidemiology of irritable bowel syndrome. Clin Epidemiol. 2014/02/14. 2014;6:71–80.
- 31. Leirisalo-Repo M, Helenius P, Hannu T, Lehtinen A, Kreula J, Taavitsainen M, et al. Long-term prognosis of reactive salmonella arthritis. Ann Rheum Dis. 1997;56(9):516–20. Available from: https://pubmed.ncbi.nlm.nih.gov/9370874
- Hannu T, Mattila L, Rautelin H, Pelkonen P, Lahdenne P, Siitonen A, et al. Campylobacter-triggered reactive arthritis: a population-based study. Rheumatology. 2002;41(3):312–8. Available from: https://doi.org/10.1093/rheumatology/41.3.312
- World Health Organization. WHO Model Formulary 2008. Stuart MC, Kouimtzi M, Hill SR, editors. 2009. Available from: https://digicollections.net/medicinedocs/documents/s16879e/s16879e.pdf
- 34. Glass K, Ford L, Hall G, Wong D, Kirk M. Health outcome trees for priority foodborne pathogens and conditions for economic costing. Report to Food Standards Australia New Zealand. 2016.
- 35. Marshall JK, Thabane M, Borgaonkar MR, James C. Postinfectious Irritable Bowel Syndrome After a Food-Borne Outbreak of Acute Gastroenteritis Attributed to a Viral Pathogen. Clinical Gastroenterology and Hepatology. 2007;5(4):457–60. Available from: https://doi.org/10.1016/j.cgh.2006.11.025

Appendix

This Appendix reproduces much of the Appendix of the prior report1, to enable replication of the model findings, together with tables summarising additional data used in these calculations.

Pathogen and illness-specific health-care usage assumptions

The following tables summarise multipliers and data sources for gastroenteritis due to all causes and for each pathogen and sequelae, in line with Kirk *et al.* and Ford *et al.*^{12,13}. The definitions of each multiplier and model parameter are as follows:

Term	Definition
Bacterial multiplier	Proportion of sequelae due to the associated pathogen
Correction factor	Adjustment when data does not include all states
Domestically acquired multiplier	Proportion of cases, hospitalisations and deaths acquired in Australia
ED proportion	Proportion of cases that visit the emergency department
Foodborne multiplier	Proportion of cases, hospitalisations and deaths acquired from food
Gastroenteritis multiplier	Proportion of Australians experiencing gastroenteritis
GP proportion	Proportion of cases that attend general practice
Hospitalisation code	International Classification of Diseases 10-AM code
Mortality code	International Classification of Diseases 10 code
Ongoing illness proportion	Proportion of cases that experience ongoing illness
Percent hospitalisations principal	Percent of all hospitalisations where the diagnosis is coded as the principal reason for admission
Sequelae multiplier	Proportion of cases of the associated pathogen that lead to this sequela
Under-diagnosis multiplier	Adjustment for requirement for laboratory testing to confirm hospitalisations and deaths
Under-reporting multiplier	Adjustment for under-notification of incident cases

Gastroenteritis due to all causes

Model input*	Source or Distribution	Ref
Gastroenteritis multiplier [†]	Pert (2.5%=0.64, median=0.74, 97.5%=0.84)	15
Foodborne multiplier	Pert (2.5%=0.13, median=0.25, 97.5%=0.42)	12
GP proportion	Pert (2.5%=0.156, median=0.196,97.5%=0.234)	15
ED proportion	Pert (2.5%=0.025, median=0.044,97.5%=0.074)	15
Hospitalisation codes	A01.0, A02.0-A02.9, A03.0-A03.9, A04.0, A04.1, A04.3-A04.6, A05.0, A05.2-A05.4, A07.1, A07.2, A08.0-A08.2, A08.5, A09.0, A09.9	16
Underdiagnosis multiplier	Pert (min=1, mode=2, max=3)	12
Percent hospitalisations principal	71%	12
Mortality codes	A01.0, A02, A03, A04.0, A04.1, A04.3-A04.6, A04.8, A04.9, A05.0, A05.2-A05.4, A05.8, A05.9, A07.1, A07.2, A07.8, A07.9, A08.0- A08.4, A08.5, A09	12

* No under-reporting multiplier or domestically acquired multiplier as incidence based on community surveillance where all cases were locally acquired. *†* Yearly probability of gastroenteritis due to any cause.

Campylobacter		
Model input	Source or Distribution	Ref
Notifications	NNDSS data	23
Domestically acquired multiplier	Pert (min=0.91, mode=0.97, max=0.99)	12
Under-reporting multiplier	Lognormal (mean=10.45, sd=2.98)	24
Foodborne multiplier	Pert (5%=0.62, median=0.77, 95%=0.89)	2
GP proportion	Pert (2.5%=0.241, median=0.367,97.5%=0.501)	15
ED proportion	Pert (2.5%=0.06, median=0.124, 97.5%=0.228)	15
Hospitalisation code	A04.5: Campylobacter enteritis	16
Underdiagnosis multiplier	Pert (min=1, mode=2, max=3)	12
Percent hospitalisations principal	79%	12
Mortality code	A04.5: Campylobacter enteritis	12

Listeria monocytogenes

Model input*	Source or Distribution	Ref
Notifications	NNDSS data	23
Domestically acquired	Assumed 100%	12
Under-reporting multiplier	Pert (5%=1, median=2, 95%=3)	12
Foodborne multiplier	Pert (min=0.9, mode=0.98, max=1)	2
GP visits per incident case	Pert (min=1, mode=2, max=3)	18
Specialist visits per incident	Pert (min=1, mode=2, max=3)	18
case		
Underdiagnosis multiplier	Pert (min=1, mode=2, max=3)	12
Mortality code	A32: Listeriosis	12
Ongoing illness proportion	Pert (2.5%=0.034, median= 0.066,	19
(congenital)	97.5%=0.104)	
Ongoing illness proportion (non-congenital)	Pert (2.5%=0.012, median=0.042, 97.5%=0.074)	19

* All incident cases assumed to be hospitalised and all hospitalised cases assumed to visit ED before admission

Non-typhoidal Salmonella

Model input	Source or Distribution	Ref
Notifications	NNDSS data	23
Domestically acquired multiplier	Pert (min=0.7, mode=0.85, max=0.95)	12
Under-reporting multiplier	Lognormal (mean=7.44, sd=2.38)	23
Foodborne multiplier	Pert (5%=0.53, median=0.72, 95%=0.86)	2
GP proportion	Pert (2.5%=0.241, median=0.367, 97.5%=0.501)	15
ED proportion	Pert (2.5%=0.06, median=0.124, 97.5%=0.228)	15
Hospitalisation code	A02.0-A02.9: Salmonellosis	16
Underdiagnosis multiplier	Pert (min=1, mode=2, max=3)	12
Percent hospitalisations principal	77%	12
Mortality code	A02: other Salmonella infections	12

Norovirus

Model input*	Source or Distribution	Ref
Gastroenteritis multiplier [†]	Pert (2.5%=0.64, median=0.74, 97.5%=0.84)	15
Pathogen fraction multiplier	Pert (2.5%=0.0772, median=0.0982, 97.5%=0.1226)	25
Foodborne multiplier	Pert (5%=0.05, median=0.18, 95%=0.35)	2
GP proportion	Pert (2.5%=0.156, median=0.196,97.5%=0.234)	15
ED proportion	Pert (2.5%=0.025, median=0.044,97.5%=0.074)	15
Hospitalisation code	A08.1: Acute gastroenteropathy due to Norwalk agent	16
Underdiagnosis multiplier	Pert (min=1, mode=2, max=3)	12
Percent hospitalisations principal	37%	12
Mortality code	A08.1: Acute gastroenteropathy due to Norwalk agent	12

* No under-reporting multiplier or domestically acquired multiplier as based on community surveillance where all cases were locally acquired. ^{*t*} Yearly probability of gastroenteritis due to any cause.

Salmonella Typhi		
Model input*	Source or Distribution	Ref
Notifications	NNDSS data	23
Domestically acquired multiplier	Pert (min=0.02, mode=0.11, max=0.25)	12
Under-reporting multiplier	Pert (2.5%=1, median=2, 97.5%=3)	12
Foodborne multiplier	Pert (min=0.02, mode=0.75, max=0.97)	2
GP visits per incident case	Pert (min=1, mode=2, max=3)	26
Underdiagnosis multiplier	Pert (min=1, mode=2, max=3)	12
Percent hospitalisations principal	93%	12
Mortality code	A01: Typhoid and paratyphoid fevers	12

Mortality codeA01: Typhoid and paratyphoid fevers12* All incident cases assumed to be hospitalised and all hospitalised cases assumed to visit ED before
admission

Shig	ella

Model input	Source or Distribution	Ref
Notifications	NNDSS data	23
Domestically acquired multiplier	Pert (min=0.45, mode=0.7, max=0.84)	12
Under-reporting multiplier	Lognormal (mean=7.44, sd=2.38)	23
Foodborne multiplier	Pert (5%=0.05, median=0.12, 95%=0.23)	2
GP proportion	Pert (2.5%=0.241, median=0.367, 97.5=0.501)	15
ED proportion	Pert (2.5%=0.06, median=0.124, 97.5%=0.228)	15
Hospitalisation code	A03.0-A03.9: Shigellosis	16
Underdiagnosis multiplier	Pert (min=1, mode=2, max=3)	12
Percent hospitalisations principal	76%	12
Mortality code	A03: Shigellosis	12

Shiga toxin-producing Escherichia coli

Model input	Source or Distribution	Ref
Notifications	State-level surveillance data	12
Domestically acquired multiplier	Pert (min=0.93, mode=0.99, max=1)	12
Under-reporting multiplier	Lognormal (mean=8.83, sd=3.7)	23
Foodborne multiplier	Pert (5%=0.32, median=0.56, 95%=0.82)	2
GP proportion	Pert (2.5%=0.241, median=0.367,97.5%=0.501)	15
ED proportion	Pert (2.5%=0.06, median=0.124, 97.5%=0.228)	15
Hospitalisation code	A04.3: Enterohemorrhagic E. coli infection	16
Underdiagnosis multiplier	Pert (min=1, mode=2, max=3)	12
Percent hospitalisations principal	59%	12
Mortality code	A04.3: Enterohemorrhagic E. coli infection	12

Other pathogenic Escherichia coli

Model input*	Source or Distribution	Ref
Gastroenteritis multiplier	Pert (2.5%=0.64, median=0.74, 97.5%=0.84)	15
Pathogen fraction multiplier [†]	Pert (2.5%=0.0525, median=0.074, 97.5%=0.0914)	25
Foodborne multiplier	Pert (5%=0.08, median=0.23, 95%=0.55)	2
GP proportion	Pert (2.5%=0.241, median=0.367, 97.5=0.501)	15
ED proportion	Pert (2.5%=0.06, median=0.124, 97.5%=0.228)	15
Hospitalisation code	A04.0: Enteropathogenic <i>E. coli</i> infection; A04.1: Enterotoxigenic <i>E. coli</i> infection; A04.2: Enteroinvasive <i>E. coli</i> infection A04.4: Other intestinal <i>E. coli</i> infection	16
Underdiagnosis multiplier	Pert (min=1, mode=2, max=3)	12
Percent hospitalisations principal	59%	12
Mortality code	A04.0: Enteropathogenic <i>E. coli</i> infection; A04.1: Enterotoxigenic <i>E. coli</i> infection; A04.2: Enteroinvasive <i>E. coli</i> infection A04.4: Other intestinal <i>E. coli</i> infection	12

* No under-reporting multiplier or domestically acquired multiplier as based on community surveillance where all cases were locally acquired. [†] Yearly probability of gastroenteritis due to any cause.

Model input	Source or Distribution	Ref
Illness	Seroprevalence data	27
Domestically acquired multiplier	Pert (min=0.7, mode=0.85, max=0.95)	12
Proportion symptomatic	Pert (min=0.11, mode=0.15, max=0.21)	12
Foodborne multiplier	Pert (min=0.04, mode=0.31, max=0.74)	12
GP proportion	Pert (min=0, mode=0.2, max=0.4)	18
ED proportion	Assumed no ED visits	18
Specialist visits per	Pert (min=1, median=2, max=3)	18
hospitalisation		
Hospitalisation code	B58.0-B58.9: Toxoplasmosis	16
Underdiagnosis multiplier	Pert (min=1, mode=2, max=3)	12
Percent hospitalisations principal	39%	12
Mortality code	B58: Toxoplasmosis	12
Ongoing illness	Pert (2.5%=0.003, median=0.005, 97.5%=0.007)	26

Toxoplasma gondii

Yersinia enterocolitica

Model input	Source or Distribution	Ref
Notifications	State-level surveillance data	12
Domestically acquired multiplier	Pert (min=0.8, mode=0.9, max=1)	12
Under-reporting multiplier	Lognormal (mean=7.44, sd=2.38)	23
Foodborne multiplier	Pert (min=0.28, mode=0.84, max=0.94)	12
GP proportion	Pert (2.5%=0.241, median=0.367,97.5%=0.501)	15
ED proportion	Pert (2.5%=0.06, median=0.124, 97.5%=0.228)	15
Hospitalisation code	A04.6: Enteritis due to Yersinia enterocolitica	16
Underdiagnosis multiplier	Pert (min=1, mode=2, max=3)	12
Percent hospitalisations principal	64%	12
Mortality code	A04.6: Enteritis due to Yersinia enterocolitica	12

Guillain-Barré syndrome

Model input*	Source or Distribution	Ref
Sequelae multiplier	Pert (min=0.000192, mode=0.000304, max=0.000945)	13
Domestically acquired multiplier	Pert (min=0.91, mode=0.97, max=0.99)	13
Bacterial multiplier	Pert (min=0.048, mode=0.31, max=0.717)	13
Foodborne multiplier+	Pert (2.5%=0.1, median=0.25, 97.5%=0.43)	12
GP visits per incident case	Pert (2.5%=3.56, median=3.6, 97.5%=3.66)	26
ED proportion	Assumed no ED visits	18
Specialist visits per incident case	Pert (2.5%=2.5, median=3, 97.5%=3.5)	18
Physiotherapy visits per incident case	Pert (2.5%=5.5, median=6, 97.5%=6.5)	18
Underdiagnosis multiplier*	Pert (min=1, mode=2, max=3)	12
Mortality code	G61.0: Guillain-Barré syndrome	12
Ongoing illness proportion (<5)	Pert (2.5%=0.065, median=0.075, 97.5%=0.085)	28
Ongoing illness proportion (5-64)	Pert (2.5%=0.14, median=0.16, 97.5%=0.18)	28
Ongoing illness proportion (65+)	Pert (2.5%=0.47, median=0.49, 97.5%=0.50)	28

* All incident cases are assumed to be hospitalised, and no additional ED visit costed; [†] Includes bacterial multiplier and applied to deaths only as only foodborne *Campylobacter* cases included in estimates of incidence and hospitalisation; [‡] Deaths only.

Haemolytic uraemic syndrome

Model input*	Source or Distribution	Ref
Sequelae multiplier	Pert (2.5%=0.017, median=0.03, 97.5%=0.051)	13
Domestically acquired multiplier	Pert (min=0.93, mode=0.99, max=1)	12
Bacterial multiplier	Pert (min=0.3, mode=0.608, max=0.852)	13
Foodborne multiplier†	Pert (2.5%=0.17, median=0.33, 97.5%=0.53)	12
GP visits per incident case	Pert (2.5%=1, median=3, 97.5%=5)	26
ED proportion	Assumed no ED visits	18
Underdiagnosis multiplier [‡]	Pert (min=1, mode=2, max=3)	12
Percent hospitalisations principal	30%	12
Mortality code	D59.3: Hemolytic-uremic syndrome	12
Ongoing illness proportion	Pert (2.5%=0.08, median=0.16, 97.5%=0.277)	29

* All incident cases are assumed to be hospitalised, and no additional ED visit costed; [†] Includes bacterial multiplier and applied to deaths only as only foodborne STEC cases included in estimates of incidence and hospitalisation; [‡] Deaths only.

Irritable bowel syndrome

Model input	Source or Distribution	Ref
Sequelae multiplier (all prior illnesses†)	Pert (2.5%=0.072, median=0.088, 97.5%=0.104)	13
Domestically acquired multiplier	Pert (5%=0.88, median=0.91, 95%=0.94)	13
Foodborne multiplier*	Pert (2.5%=0.068, median=0.13, 97.5%=0.33)	12
GP visits per incident case	Pert (2.5%=4.27, median=4.5, 97.5%=4.73)	26
ED proportion	Assumed no ED visits	26
Specialist visits per incident case	Pert (2.5%=0.286, median=0.3, 97.5%=0.315)	30
Hospitalisation code	K58.0: Irritable bowel with diarrhea; K58.9: Irritable bowel without diarrhea	12
Underdiagnosis multiplier	Pert (min=1, mode=2, max=3)	12
Percent hospitalisations principal	69%	12
Mortality code	K58: Irritable bowel syndrome	12
Ongoing illness proportion	Pert (2.5%=0.218, median=0.429, 97.5%=0.66)	31

* Includes bacterial multiplier and applied to deaths and hospitalisations only as only foodborne cases included in estimates of incidence. †IBS is a possible sequela for *Campylobacter, Salmonella* and *Shigella*.

Reactive arthritis

Model input	Source or Distribution	Ref
Sequelae multiplier (<i>Campylobacter</i>)	Pert (min=0.028, mode=0.07, max=0.16)	13
Sequelae multiplier (<i>Salmonella</i>)	Pert (min=0, mode= 0.085, max=0.26)	13
Sequelae multiplier (<i>Shigella</i>)	Pert (min=0.012, mode=0.097, max=0.098)	13
Sequelae multiplier (<i>Y.</i> enterocolictica)	Pert (min=0, mode=0.12, max=0.231)	13
Domestically acquired multiplier	Pert (5%=0.86, median=0.91, 95%=0.95)	13
Bacterial multiplier	Pert (min=0.5, median=0.66, max=0.947)	13
Foodborne multiplier*	Pert (5%=0.36, median=0.48, max=0.61)	12
GP visits per incident case	Pert (2.5%=0.66, median=0.8, 97.5%=0.89)	26
ED proportion	Assumed no ED visits	26
Specialist visits per case per year	Pert (2.5%=0.223, median=0.24, 97.5%=0.258)	32
Hospitalisation code	M02.1: Postdysenteric arthropathy, multiple sites; M02.3: Reiter's disease, multiple sites; M02.8: Other reactive arthropathies, multiple sites; M03.2: Other postinfectious arthropathies in diseases classified elsewhere, multiple sites	12
Underdiagnosis multiplier	Pert (min=1, mode=2, max=3)	12
Percent hospitalisations principal	50%	12
Mortality code	M02.1: Postdysenteric arthropathy; M02.8: Other reactive arthropathies	12
Ongoing illness proportion	Pert (2.5%=0.23, median=0.5, 97.5%=0.77)	30,31

* Includes bacterial multiplier and applied to deaths and hospitalisations only as only foodborne cases included in estimates of incidence.

Pathogen and illness-specific medication usage assumptions

Medication ^{†*}	Age group	Distribution
Antidiarrhoeal	0-4	Pert (2.5%=0.012, mode=0.062, 97.5%=0.27)
	5-64	Pert (2.5%=0.107, median=0.145, 97.5%=0.193)
	65+	Pert (2.5%=0.232, median=0.349, 97.5%=0.489)
Painkillers	0-4	Pert (2.5%=0.29, median=0.38, 97.5%=0.47)
	5-64	Pert (2.5%=0.13, median=0.178, 97.5%=0.238)
	65+	Pert (2.5%=0.014, median=0.053.97.5%=0.186)
Anti-nausea	0_4	Pert $(2.5\% - 0.008 \text{ median} - 0.04, 97.5\% - 0.187)$
Anti nausca	5-64	Pert $(2.5\%=0.000, \text{median}=0.04, 97.5\%=0.104)$
	65+	Pert (2.5%=0.035, median=0.106, 97.5%=0.279)
Anti-cramps	0-4	none
	5-64	Pert (2.5%=0.012, median=0.028, 97.5%=0.063)
	65+	Pert (2.5%=0.0002, median=0.001, 97.5%=0.004)
Antibiotics	0-4	Pert (2.5%=0.008, median=0.04, 97.5%=0.187)
	5-64	Pert (2.5%=0.006, median=0.014, 97.5%=0.035)
	65+	Pert (min=0, median=0.051, 97.5%=0.104)

Gastroenteritis due to all causes and Norovirus

* All estimates from the NGSII15; [†] Medication proportions applied to incident cases.

Medication ^{†*}	Age	Distribution
	group	
Antidiarrhoeal	0-4	Pert (min=0.0025, mode=0.003, max=0.3)
	5-64	Pert (2.5%=0.166, median=0.286, 97.5%=0.439)
	65+	Pert (min=0.094, median=0.653, max=0.906)
Painkillers	0-4	Pert (2.5%=0.12, median=0.38, 97.5%=0.65)
	5-64	Pert (2.5%=0.127, median=0.242, 97.5%=0.385)
	65+	Pert (2.5%=0.051, median=0.307, 97.5%=0.708)
Anti-nausea	0-4	Pert (min=0.0025, mode=0.003, max=0.305)
	5-64	Pert (2.5%=0.042, median=0.12, 97.5%=0.237)
	65+	Pert (2.5%=0.051, median=0.307, 97.5%=0.708)
Anti-cramps	0-4	none
	5-64	Pert (min=0.028, mode=0.077, max=0.204)
	65+	Pert (2.5%=0.051, median=0.277, 97.5%=0.708)
Antibiotics	0-4	Pert (2.5%=0.25, median=0.37, 97.5%=0.50)
(Shigella)	5-64	Pert (2.5%=0.25, median=0.37, 97.5%=0.50)
	65+	Pert (2.5%=0.25, median=0.37, 97.5%=0.50)
Antibiotics (all other	0-4	Pert (2.5%= 0.005, median=0.082, 97.5%=0.305)
bacterial pathogens)	5-64	Pert (2.5%= 0.016, median=0.067, 97.5%=0.169)
	65+	Port (min-0 modian-0.051 97 5%-0.104)

65+Pert (min=0, median=0.051, 97.5%=0.104)* All estimates from the NGSII15, weighted by disease severity; † Medication proportions applied to
incident cases, assuming all cases of *Shigella* who visit a GP receive antibiotics.

Listeria monocytogenes

Medication*	Age group	Assumption	Ref
Antibiotics	All	All surviving cases receive 4 weeks amoxicillin	18

* Medication proportions applied to incident cases.

Toxoplasma gondii

Medication*	Age group	Assumption	Ref
Antibiotics	All	All cases receive 4 weeks high-dose medication	18

* Medication proportions applied to cases that visit a GP.

Irritable bowel syndrome

Medication [‡]	Age group	Assumption	Ref
Any medication [†]	All	Pert (5%=0.385, median=0.4, 95%=0.416)	*

* Where information sources were not available, we obtained expert opinion from clinical advisor Philip Haywood; † Includes Anti-diarrhoeal medication, Anti-depressants, Anti-spasmodic medication, Anti-cramp medication, and anti-constipation medication; † Medication proportions applied to incident cases.

Reactive arthritis

<i>Medication</i> [†]	Age group	Assumption	Ref
Antibiotics	All	Pert (5%=0.16, median=0.2, 95%=0.244)	18
NSAID	All	Pert (5%=0.528, median=0.762, 95%=0.918)	33
Eye drops	All	Pert (5%=0.16, median=0.2, 95%=0.244)	18
Prednisone	All	Pert (5%=0.001, median=0.019, 95%=0.099)	18
Inter- articular glucocorticoid	All	Pert (5%=0.16, median=0.2, 95%=0.244)	*
DMARD	All	Pert (5%=0.012, median=0.095, 95%=0.304)	33

* Where information sources were not available, we obtained opinions from clinical advisor Philip Haywood; [†]Medication proportions applied to cases that visit a GP.

Pathogen and illness-specific testing assumptions

Gastroenteritis due to all causes, other pathogenic E. coli and Norovirus Test^{†*} Distribution

Age

group All

Stool culture Pert (5%=0.016, median=0.031, 95%=0.057) * All estimates from the NGSII15; † Test proportions applied to incident cases.

Bacterial pathogens causing gastroenteritis modelled using the surveillance approach

Test*	Assumption	

Stool culture All notifications have a stool culture

* Campylobacter, Salmonella, Shigella, STEC (population adjusted), Yersinia enterocolitica (population adjusted)

Listeria monocytogenes

Test*	Age group	Assumption	Ref
FBC	All	All surviving cases undergo this test	18
ESR	All	All surviving cases undergo this test	18

* Test proportions applied to incident cases. FBC= Full Blood Count; ESR=Erythrocyte Sedimentation Rate

Toxoplasma gondii

Test*	Age group	Assumption	Ref
FBC	All	All cases that visit a GP undergo this test	26
ESR	All	All cases that visit a GP undergo this test	26

* Test proportions applied to cases that visit a GP. FBC= Full Blood Count; ESR=Erythrocyte Sedimentation Rate

Irritable bowel syndrome

Test [†]	Age group	Distribution	Ref
Stool culture	All	Pert (min=0.667, mode=1, max=1)	*
Full blood count (FBC)	All	Pert (min=0.667, mode=1, max=1)	*
ESR	All	Pert (min=0.667, mode=1, max=1)	*
Liver function test	All	Pert (min=0.667, mode=1, max=1)	*
C-reactive protein	All	Pert (min=0.667, mode=1, max=1)	*
Coeliac screening	All	Pert (min=0.667, mode=1, max=1)	*
Radiology	All	Pert (5%=0.652, median=0.667, 95%=0.681)	*
Ultrasound	All	Pert (5%=0.484, median=0.5, 95%=0.516)	*
Endoscopy and	0-4	Not done	*
biopsy	5-64	Pert (5%=0.05, median=0.1, 95%=0.15)	*
	65+	Pert (5%=0.15, median=0.2, 95%=0.25)	*

* Where information sources were not available, we obtained opinions from clinical advisor Philip Haywood; † Test proportions applied to incident cases.

Reactive arthritis

Test [†]	Age group	Distribution	Ref
Stool culture	All	Pert (5%=0.097, median=0.132, 95%=0.174)	*
Serology	All	Pert (5%=0.097, median=0.132, 95%=0.174)	*
Urine test	All	Pert (5%=0.097, median=0.132, 95%=0.174)	*
C-reactive protein and Urate	All	Pert (5%=0.16, median=0.2, 95%=0.244)	18
FBC	All	Pert (5%=0.16, median=0.2, 95%=0.244)	18
ESR	All	Pert (5%=0.16, median=0.2, 95%=0.244)	18
EUC	All	Pert (5%=0.16, median=0.2, 95%=0.244)	18
ANA	All	Pert (5%=0.16, median=0.2, 95%=0.244)	*
Rheumatoid factor	All	Pert (5%=0.16, median=0.2, 95%=0.244)	18
Renal function	All	Pert (5%=0.16, median=0.2, 95%=0.244)	*
Blood HLA-B27	All	Pert (5%=0.16, median=0.2, 95%=0.244)	18
X-ray	All	Pert (5%=0.012, median=0.095, 95%=0.304)	*
Ultrasound	All	Pert (5%=0.017, median=0.034, 95%=0.062)	*
MRI	All	Pert (5%=0.002, median=0.01, 95%=0.03)	*
Joint aspiration	All	Pert (5%=0.16, median=0.2, 95%=0.244)	*

FBC= Full Blood Count; ESR=Erythrocyte Sedimentation Rate; EUC= Electrolytes, urea, creatinine; ANA= Antinuclear Antibody; * Where information sources were not available, we obtained opinions from clinical advisor Philip Haywood; † Test proportions applied to cases that visit a GP.

Pathogen or illness*	AR-DRG code and description	ALOS (days)	Cost (\$)
Guillain-Barré syndrome (ALOS 10.1)	B06A: Procedures for Cerebral Palsy, Muscular Dystrophy and Neuropathy, Major Complexity	12.0	28,927
Pathogens causing gastroenteritis ages 65+	G67A Oesophagitis and Gastroenteritis, Major Complexity	3.5	6,155
Pathogens causing gastroenteritis ages <65; Irritable bowel Syndrome	G67B Oesophagitis and Gastroenteritis, Minor Complexity	1.3	1,961
Reactive arthritis (ALOS 3.0)	I66B Inflammatory Musculoskeletal Disorders, Minor Complexity	3.3	6,364
Haemolytic uraemic syndrome (ALOS 1.8)	L02B Operative Insertion of Peritoneal Catheter for Dialysis, Minor Complexity	1.4	6,065
Listeriosis (ALOS 13.8)	50% T01A Infectious and Parasitic Diseases W GIs, Major Complexity 50% T01B Infectious and Parasitic Diseases W Gis, Intermediate Complexity Average	23.1 9.7	50,828 18,592 24,710
Toxoplasmosis	T01A Infectious and Parasitic Diseases	23.1	50,828
<i>S.</i> Typhi (ALOS 5.3)	50% T64B Other Infectious and Parasitic Diseases, Intermediate complexity 50% T64C Other Infectious and Parasitic	7.7	12,233
	Diseases, Minor complexity Average	<i>3.3</i> 5.5	<i>5,199</i> 8,716

Hospitalisation codes for pathogens and illnesses

* For single pathogen or illness categories, the ALOS for 2018–19 corresponding to that ICD10-AM code is provided in brackets for comparison.

Days of paid work lost

Pathogen or Illness	Non-hospitalised cases				Hospitalised cases							
	Days lost by the case		Days lost by a carer		Days lost by the case		e case	Days lost by a carer				
Age group	< 5	5 - 64	65+	< 5	5 - 64	65+	< 5	5 - 64	65+	< 5	5 - 64	65+
Total infectious gastroenteritis	0	0.73	0.1	0.61	0.18	0.39	0	1.5	0.5	1.6	0.5	1.0
				Bacte	ria							
Campylobacter spp.	0	0.73	0.1	0.61	0.18	0.39	0	2.0	0.6	1.7	0.7	1.3
Listeria monocytogenes		all case	es assum	ed hospit	talised		0	6.9	1.6	8.5	2.6	3.0
Non-typhoidal Salmonella	0	0.73	0.1	0.61	0.18	0.39	0	2.3	0.8	2.1	0.8	1.6
Shigella spp.	0	0.73	0.1	0.61	0.18	0.39	0	2.3	0.5	2.2	0.8	1.2
Shiga toxin-producing <i>Escherichia</i> coli	0	0.73	0.1	0.61	0.18	0.39	0	2.3	0.5	2.0	0.8	1.2
Other pathogenic Escherichia coli	0	0.73	0.1	0.61	0.18	0.39	0	2.1	1.1	2.6	0.7	2.1
Salmonella Typhi		all case	es assum	ed hospit	talised		0	3.2	1.1	3.3	1.2	2.1
Yersinia enterocolitica	0	0.73	0.1	0.61	0.18	0.39	0	1.9	0.7	2.1	0.7	1.5
Protozoa												
Toxoplasma gondii	0	0.73	0.1	0.61	0.18	0.39	0	16.6	1.0	1.2	6.4	2.0
Viruses												
Norovirus	0	0.73	0.1	0.61	0.18	0.39	0	2.1	0.8	1.9	0.7	1.6

Sequelae	Days lost by the case			Days lost by a carer		
Age group	< 5	5 - 64	65+	< 5	5 - 64	65+
Guillain-Barré syndrome	0	43.1	9.6	51.4	17.1	17.1
Haemolytic uraemic syndrome	0	11.0	2.5	13.1	4.4	4.4
Irritable bowel syndrome	0	2.4	0.5	2.9	1.0	1.0
Reactive arthritis	0	4.8	1.1	5.7	1.9	1.9

Willingness to pay to avoid pain and suffering

Pathogen or Illness	Pathogen or Illness Non-hospitalised cases		Hospitalised cases				
	Daily WTP to avoid pain and suffering (95% CI) †	Mean Duration ^{††}	Daily WTP to avoid pain and suffering (95% CI)	Mean Duration ^{††}			
Total infectious gastroenteritis	Mild GI illness: \$11 (\$9, \$12)	3 days	Severe GI illness: \$23 (\$22, \$24)	5.3 days			
Bacteria							
Campylobacter spp.	Severe GI illness: \$23 (\$22, \$24)	6 days	Severe GI illness: \$23 (\$22, \$24)	9.5 days			
Listeria monocytogenes	all cases assumed hospitalised		Severe flu-like illness: \$19 (\$17, \$20)	34.7 days			
Non-typhoidal Salmonella	Severe GI illness: \$23 (\$22, \$24)	6 days	Severe GI illness: \$23 (\$22, \$24)	9.8 days			
Shigella spp.	Severe GI illness: \$23 (\$22, \$24)	6 days	Severe GI illness: \$23 (\$22, \$24)	9.3 days			
Shiga toxin-producing Escherichia coli	Severe GI illness: \$23 (\$22, \$24)	6 days	Severe GI illness: \$23 (\$22, \$24)	9.5 days			
Other pathogenic Escherichia coli	Mild GI illness: \$11 (\$9, \$12)	3 days	Severe GI illness: \$23 (\$22, \$24)	8.6 days			
Salmonella Typhi	all cases assumed hospit	alised	Severe GI illness: \$23 (\$22, \$24)	26.4 days			
Yersinia enterocolitica	Severe GI illness: \$23 (\$22, \$24)	6 days	Severe GI illness: \$23 (\$22, \$24)	9.4 days			
Protozoa							
Toxoplasma gondii	Mild flu-like illness: \$8 (\$6, \$10)	7 days	Severe flu-like illness: \$19 (\$17, \$20)	42.9 days			
	Viruses	6					
Norovirus	Mild GI illness: \$11 (\$9, \$12)	2 days	Severe GI illness: \$23 (\$22, \$24)	5.7 days			

[†]Values from CHERE report¹⁰. ^{††} Mean duration of illness for acute non-hospitalised cases from prior report³⁴; duration of illness for acute hospitalised cases assumed to be ALOS in hospital in 2018/2019 plus duration of illness of non-hospitalised cases for pathogens causing gastroenteritis, and based on Abelson¹⁸ for listeriosis, toxoplasmosis and *S*. Typhi. GI = Gastrointestinal Illness.

Sequelae	Yearly WTP ⁺ to avoid pain and suffering for primary phase of illness (95% CI)	Proportion with ongoing illness†† (95% Confidence Interval)	Yearly WTP ⁺ to avoid pain and suffering for ongoing illness (95%CI)	Duration of ongoing illness
Guillain-Barré syndrome	Severe GBS: \$1,371 (\$1,291, \$1,426)	age <5: 7.5% (6.5–8.5) age 5–64: 16% (14–18) age 65+: 49% (47–50)	Mild GBS: \$762 (\$625, \$862)	5 years
Haemolytic uraemic syndrome	Severe HUS: \$1,620 (\$1,595, \$1,637)	16% (8%-27.7%)	Mild HUS: \$901 (\$778, \$993)	5 years
Irritable bowel syndrome	70%: Mild IBS: \$344 (\$124, \$506) 30%: Severe IBS: \$964 (\$755, \$1,100)	42.9% (21.8%-66.0%)	Mild IBS: \$344 (\$124, \$506)	5 years
Reactive arthritis	80%: Mild ReA: \$605 (\$461, \$714) 20%: Severe ReA: \$1,166 (\$1,060, \$1,241)	41% (29–54) of those with severe primary illness	Mild ReA: \$605 (\$461, \$714)	5 years

[†]Willingness to pay values from CHERE report¹⁰. ^{††} Defined as permanent disability for GBS²⁸, permanent disability due to chronic renal failure for HUS²⁹, and ongoing symptoms at 12 months for IBS and ReA^{31,32,35}.

Health outcome trees

We present the health outcome trees previously reported34 that illustrate the disease states by pathogen. Note that these trees do not represent an individual patient's journey, but capture states associated with health costs.

Gastroenteritis

Figure A1: Health outcome tree for gastroenteritis due to all causes; dashed lines indicate that death may follow the preceding states

Campylobacter

Figure A2: Health outcome tree for *Campylobacter* spp.; dotted lines indicate the potential for these sequelae to follow acute illness, and for ongoing illness to result from sequelae, while dashed lines indicate that death may follow the preceding state.

Listeria monocytogenes

Figure A3: Health outcome tree for *Listeria monocytogenes*; dotted lines indicate potential for ongoing illness following hospitalisation, while dashed lines indicate that death may follow hospitalisation.

Norovirus

Figure A4: Health outcome tree for norovirus; dashed lines indicate that death may follow the preceding states.

Non-typhoidal Salmonella

Figure A5: Health outcome tree for *Salmonella*; dotted lines indicate potential sequelae following acute illness, and potential ongoing illness following GP consultation or hospitalisation for a sequela, while dashed lines indicate that death may follow the preceding state.

Shigella

Figure A6: Health outcome tree for *Shigella* spp.; dotted lines indicate potential sequelae following acute illness, and ongoing illness following GP visit or hospitalisation for reactive arthritis, while dashed lines indicate that death may follow the preceding state.

STEC

Figure A7: Health outcome tree for Shiga toxin-producing Escherichia coli (STEC); dotted lines indicate potential sequelae of haemolytic uraemic syndrome (HUS) following acute illness and potential ongoing illness following hospitalisation for HUS, while dashed lines indicate that death may follow the preceding states.

Other pathogenic E. coli

Figure A8: Health outcome tree for other (non-STEC) pathogenic E. coli; dashed lines indicate that death may follow the preceding states.

Toxoplasma gondii

Figure A9: Health outcome trees for Toxoplasma gondii; dotted lines indicate the potential for ongoing illness to follow health care; dashed lines indicate that death may follow the preceding states.

Salmonella Typhi

Figure A10: Health outcome tree for *S*. Typhi; dashed lines indicate that death may follow hospitalisation. All incident cases are assumed to be hospitalized.

Yersinia enterocolitica

Figure A11: Health outcome tree for Yersinia enterocolitica; dotted lines indicate potential sequelae following acute illness, and potential for ongoing illness to follow health care for reactive arthritis, while dashed lines indicate that death may follow the preceding states.

Attribution proportions by pathogen

The attribution proportions aggregated across experts were modelled using a step-wise uniform distributions defined by their 0%, 5%, 50%, 95% and 100% quantiles, with constant probability density between each of these quantiles. The two extreme quantiles were assumed fixed to 0% and 100% attribution respectively for all product/pathogen pairs, but the medians (50% quantiles) and 90% intervals (5% and 95% quantiles) are summarised in the table below.

Median (90% interval) for aggregated estimates of attribution percentages (%)									
	Campylobacter	Listeria monocytogenes	Non-typhoidal Salmonella	STEC	Toxoplasma gondii	Yersinia Enterocolitica			
Beef	5	4	6	36	22	10			
	(1 - 15)	(0 - 15)	(1 - 14)	(7 - 63)	(5 - 58)	(0 - 30)			
Crustaceans	0*	5 (0 - 16)	0*	0*	0*	0*			
Dairy	6 (0 - 13)	16 (5 - 43)	3 (0 - 18)	9 (0 - 38)	5 (0 - 15)	7 (0 - 27)			
Eggs	0*	0*	21 (2 - 51)	0*	0*	0*			
Finfish	0*	12 (1 - 38)	1 (0 - 4)	0*	0*	2 (0 - 8)			
Fruit	0*	13 (1 - 23)	5 (0 - 13)	5 (1 - 11)	5 (1 - 10)	0*			
Grains and seeds	0*	0*	4 (0 - 17)	3 (0 - 9)	0*	0*			
Lamb	4	3	3	9	22	10			
	(0 - 11)	(0 - 8)	(0 - 11)	(1 - 35)	(2 - 59)	(0 - 30)			
Molluscs	0*	3 (0 - 8)	1 (0 - 4)	0*	0*	0*			
Nuts	0*	0*	2 (0 - 9)	1 (0 - 5)	0*	0*			
Pork	5 (0 - 14)	10 (0 - 25)	4 (1 - 14)	6 (0 - 24)	17 (2 - 39)	54 (12 - 82)			
Poultry	(0 - 14) 69	(0 - 23)	(1 - 14)	(0 = 24) 0*	(2 - 33)	0*			
rountry	(40 - 89)	(0 - 14)	(4 - 47)	0	(1 - 12)	0			
Vegetables	7 (1 - 14)	24 (9 - 39)	26 (4 - 49)	19 (5 - 56)	16 (1 - 47)	16 (1 - 49)			
Other	11	0*	1	6	12	1			
	(0 - 20)		(0 - 5)	(1 - 20)	(1 - 38)	(0 - 95)			
Total [†]	107	91	98	93	103	100			

.

* No cases were deemed to be associated with this source/pathogen pair.

[†] Totals are of point estimates (medians) for each food commodity and therefore are not guaranteed to sum to 100 after estimates from experts are weighted and aggregated. Estimates of the cost associated with 'All food' in this report use 100% of costs and do not use the total across food commodities.

Research School of Population Health National Centre for Epidemiology and Population Health +61 2 6125 2468 Kathryn.Glass@anu.edu.au

The Australian National University Canberra ACT 2601 Australia <u>www.anu.edu.au</u>

CRICOS Provider No. 00120C